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Abstract

We review the first successful miscroscopic derivation of black hole entropy in string theory with the

necessary background to understand the argument. In particular, we present a conformal field theory

background and prove the Cardy formula. We also review certain aspects of superstring theory.
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1 Black Hole Thermodynamics

Black Holes are defined as regions which are causally disconnected from infinity. The boundary of the

region is defined by a surface called the event horizon. There exist uniqueness theorems for black holes

which in essence state that black holes are described by metrics of the Kerr family (see [1] or [2]). The

mechanics of black holes can be reduced to four laws (see [3] or section 9 in [4]). The zero-th law of

black hole mechanics states that the surface gravity, κ, which is the acceleration felt by an object at

the horizon as measured from an observer at infinity, of a stationary black hole is constant over the

event horizon. The first law states that the perturbation of a stationary black hole of mass M , area A,

angular momentum J , angular velocity ΩH and charge Q with electrostatic potential Φ must satisfy:

δM =
κ

8π
δA+ ΩHδJ + ΦδQ. (1)

The second law states that the area A of a black hole, i.e. defined by its event horizon, does not

decrease with time, δA ≥ 0. Finally, the third law states in essence that κ = 0, i.e. an extremal

black hole, cannot be realized in a finite time if the energy-momentum tensor Tab of the perturbation

satisfies the weak energy condition, i.e. TabV
aV b ≥ 0 for any causal vector V a, close to the horizon

(see [5], [6]).

As the laws of black hole mechanics are very similar to the laws of thermodynamics, it led to the idea

that the second law corresponds to the second law of thermodynamics, which states that entropy is

never decreasing. J. D. Bekenstein first conjectured with information theoretic arguments that a black

hole must have an entropy SBH, which is proportional to its area A, and that the generalized second

law of thermodynamics is that the total entropy S = SBH + Smatter is non-decreasing, see [7]. This

entropy formula derived from Gedanken experiments was confirmed by S. Hawking, when he derived

by considering quantum field theory in curved spaces that a black hole is actually radiating particles as

a black body at temperature T = κ/2π (see [8], [4], or [28]). Now, as we know from thermodynamics

that TdS = dM . We infer from equation (1) that the entropy of a black hole must be

SBH =
A

4
, (2)

the Bekenstein–Hawking entropy.

It would be now desirable to derive this entropy by counting microscopic states of the black hole as

in statistical mechanics. However, if we consider a Schwarzshild black hole, the metric describing it is

unique (see section 2.1 in [4]). Thus, when counting all possible geometric configurations, the entropy

of a Schwarzshild black hole would be zero, which contradicts equation (2). This contradiction means

that our theory is not suitable for such a computation (see [9]). On the other hand, a theory of

quantum gravity should be able to describe the entropy microscopically, as black holes would arise as

excitations of quantum mechanical states.
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2 Conformal Field Theory and the Cardy Formula

We first review some facts about 2-dimensional conformal field theory before deriving the Cardy

formula, which is central in the derivation of black hole entropy presented below. As this section is

only meant as a review, we state those facts mostly without proofs. We follow for the most part [10]

and [11] for the conformal field theory background. For the derivation of the Cardy formula, we follow

[14] and [15].

2.1 Classical Conformal Field Theory

A conformal field theory is a field theory which is invariant under conformal transformations, that is

transformations of the fields (i.e. not just diffeomorphism covariance) that leave the metric invariant

up to some position-dependent factor (see section 2.4 in [18]). Conventionally, Euclidean coordinates

are used, i.e. (σ0, σ1) ≡ (σ̃0, iσ̃1) with σ̃0, σ̃1 ∈ R, where σ0 can be thought of the time coordinate and

σ1 is the space coordinate.

The stress-energy tensor is per definition given by:

Tαβ =
−4π
√
g

∂S

∂gαβ
, (3)

where S denotes the action of our theory and the normalization constant follows the string-theoretic

convention. Its conservation is given by the equations ∇αT
αβ = 0, where ∇ denotes the covariant

derivative. For a conformally invariant theory, the action is obviously conformally invariant. We can

compute the variation of the action with respect to a specific conformal transformation called Weyl

transformation δgαβ = εgαβ from which it follows that the stress-energy tensor is traceless, i.e. Tαα = 0.

To proceed with quantization, we compactify the σ1 direction to avoid any infrared divergence, i.e.

σ1 ≡ σ1 + 2π. The conformal field theory is then defined on a cylinder. Additionally, we conformally

transform our cylindrical coordinates to the flat complex plane where the tools of complex analysis can

be used more easily, i.e. we define the complex coordinates z = eσ0+iσ1 and z = eσ0−iσ1 . We assume

that z and z are independent while remembering that in fact z = z∗. In these coordinates, we write

∂ := ∂z, ∂ := ∂z and gzz = gz̄z̄ = 0, gzz = 1
2
. The tracelessness of the stress-energy tensor becomes,

Tzz = 0. Using this fact, the conservation of the stress-energy tensor becomes ∂Tzz = 0, ∂Tz̄z̄ = 0. We

can thus make the following definitions T (z) := Tzz(z) = Tzz(z, z), T (z) = Tz̄z̄(z) = Tz̄z̄(z, z). For the

following discussion, we will only consider T and only state the results for T as the same discussion

holds for T .

2.2 Quantum Mechanical Conformal Field Theory

We note that with the coordinates we have defined above, the origin of the complex plane corresponds

to the infinite past and each circle centered around the origin represents a constant time slice. Hence,

dilations on the complex plane correspond to time evolution. This provides the intuition for radial
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quantization. In this formalism, we will consider all conformal operators on the complex plane to define

our quantum mechanical conformal field theory, instead of usual fields from quantum field theory. We

will denote arbitrary operators with O(z, z). From now on, conformal field theory (CFT) will refer to

quantum mechanical conformal field theory.

2.3 OPE

The Operator Product Expansion (OPE) states that we can always write the product of two operators

acting closely to one another inside time-ordered correlations functions as a weighted sum over all the

other operators:

〈Oi(z, z)Oj(w,w) . . .〉 =
∑
k

Ck
ij(z − w, z − w) 〈Ok(w,w) . . .〉 ,

where ’. . .’ denotes any other operator Ol(x, x) inserted at |x−w|, |x− z| > |z−w|, |x−w|, |x− z| >
|z−w|, which is a necessary condition for the convergence of the OPE. By abuse of notation, we drop

the time-ordered correlation symbols.

2.4 Central Charge

The central charge of a CFT tells us about the degrees of freedom in our theory. The central charge

is defined by considering the OPE of the stress-energy tensor with itself (a motivation for this fact is

given in [11], section 4.4):

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T, (4)

where c is the central charge. Replacing all the variables with their complex conjugate, and T by T

yields the definition of c. From Noether’s theorem, we know that the stress-energy tensor generates

local conformal transformations, as it was found by a local variation of the action. The corresponding

Noether charges are given by integrating the Noether current at a constant time slice, i.e. as a contour

integral at constant radius on the complex plane:

Q =
1

2πi

∮
(dz T (z)ε(z) + dz T (z)ε(z)), (5)

for an infinitesimal local conformal transformation δz = ε(z) and δz = ε(z). The infinitesimal trans-

formations property of any CFT operator is then generated by those charges as:

δε,εO(w,w) = [Q,O]. (6)

Thus, for smooth infinitesimal conformal transformations, which are non-singular at w,w, we can

Taylor expand ε(z) = ε(w) + ∂ε(w)(z−w) + . . .. Assuming that z, z are independent, we find that for
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δεT (w) the contour integral in equation (6) will pick up the following terms only:

δεT (w) =
1

2πi

∮
dzε(z)[T (z), T (w)] = ε(w)∂T (w) + 2∂ε(w)T (w) +

c

12
∂3ε(w),

where we used the Taylor expansion of ε, equation (4) and took care of the contour integrals as in [10]

section 2.2. Integrating this equation out for a conformal transformation z → f(z), we find that the

stress-energy tensor transforms as:

T (z)→ (∂f)2T (f(z)) +
c

12
S(f, z); S(f, z) =

∂f∂3f − 3
2
(∂2f)2

(∂f)2

where S is called the Schwartzian. This leads to the Casimir energy which will be important when

deriving the Cardy formula. Under the conformal transformation from cylindrical to flat complex

coordinates, the stress-energy tensor transforms as: Tcyl(σ0 + iσ1) = z2T (z)− c
24
, since (∂f)2 = 1

z2 and

S(f, z) = 1
2z2 . Then the ground state energy on the cylinder is shifted by E = −2π(c+c)

24
, assuming that

the ground state energy on the plane is zero:

H :=

∫
dσTcyl,σ0σ0 =

∫
dσ(Tcyl,u,u + T cyl,u,u),

where u = σ0 + iσ1 and u = σ0 − iσ1. Thus when going from the Hamiltonian on flat space to the

Hamiltonian on the cylinder we will have to take into account this shift in energy.

2.5 Free Scalar Field

We now determine the central charge for the free scalar field. The action for the free scalar field is:

S =
1

2

∫
dzdz∂αX∂

αX. (7)

We now denote for convenience the tuples (z, z) with the letter y. Using the path integral formalism,

we compute:

0 =

∫
DX

δ

δX(y)
[e−SX(y′)] =

∫
DXe−S[∂2X(y)X(y′) + δ(y − y′)],

from which we infer that:

〈∂2X(y)X(y′)〉 = −δ(y − y′) and 〈X(y)X(y′)〉 = − 1

4π
ln(y − y′)2,

using ∂2 ln(y−y′)2 = 4πδ(y−y′) (see section 4.3.1 in [11]). Using the equation of motion derived from

the action, which is a free wave equation, we write the operators X in terms of left and right moving

operators X(y) = X(z) + X(z). Considering only the right moving operators X(z) as the discussion
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for the left moving operators is analogous, we find:

〈X(z)X(w)〉 = − 1

4π
ln(z − w) and 〈∂X(z)∂X(w)〉 = − 1

4π

1

(z − w)2
.

As we could have inserted any other operators in the time ordered product without changing the

calculation, the OPE is hence:

∂X(z)∂X(w) = − 1

4π

1

(z − w)2
+ . . . .

Classically, the stress-energy tensor is given by T (z) = −2π∂X∂X. Quantum mechanically, we need

to normal order this product, as the two operators are acting at the same position which leads to

divergences. We thus define:

T (z) := −2π : ∂X∂X : = −2π lim
z→w

(
∂X(z)∂X(w)− 〈∂X(z)∂X(w)〉

)
,

which is finite per construction. Finally, we compute the OPE of two stress-energy tensors using

Wick’s contractions:

T (z)T (w) =4π2 : ∂X(z)∂X(z) : : ∂X(w)∂X(w) :

=8π2

(
1

4π

1

(z − w)2

)2

− 16π2

(
1

4π

: ∂X(z)∂X(w) :

(z − w)2

)
=

1/2

(z − w)4
+ . . . ,

where we have taken into account all the possible contractions. This calculation implies that the

central charge is c = 1 and similarly we would find that c = 1.

2.6 Free Fermionic Field

We compute the central charge for free Majorana fermions. We only outline the proof since it follows

from the same computation as for the free scalar field. The action is:

S[ψ] =

∫
dzdz(ψ∂ψ + ψ∂ψ), (8)

where ψ(z) is the chiral fermion and ψ(z) is the antichiral fermion. We can then compute the propa-

gators (see [12], section 2.6 for more details) and find:

ψ(z)ψ(w) =
1

2π

1

z − w
, ψ(z)ψ(w) =

1

2π

1

z − w
,

from which we also find:

∂ψ(z)∂ψ(w) = − 1

π

1

(z − w)3
, ∂̄ψ(z)∂̄ψ(w) = − 1

π

1

(z − w)3
.
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The normal ordered stress-energy tensors are given by: T (z) = −π : ψ∂ψ : , T (z) = −π : ψ∂̄ψ : .

Finally, we make use of Wick’s theorem and compute:

T (z)T (w) =(−π)2 : ψ∂ψ : : ψ∂ψ :

=π2 〈∂ψ(z)ψ(w)〉 〈ψ(z)∂ψ(w)〉 − π2 〈ψ(z)ψ(w)〉 〈∂ψ(z)∂ψ(w)〉+ . . .

=π2 1

2π

(−1)

(z − w)2

1

2π

1

(z − w)2
− π2 1

2π

1

z − w
(−1)

π

1

(z − w)3
+ . . . =

1/4

(z − w)4
+ . . . ,

from which it follows that the central charge is c = 1/2 and similarly c = 1/2.

2.7 Virasoro Algebra

We consider the Laurent series of the stress-energy tensors:

T (z) =
∑
n∈Z

z−n−2Ln, T (z) =
∑
n∈Z

z−n−2Ln,

which we can invert, yielding:

Ln =

∮
dz

2πi
zn+1T (z), Ln =

∮
dz

2πi
zn+1T (z).

It is interesting to note that these operators are in fact the generators from equation (5) for infinitesimal

conformal transformation of the form ε(z) = zn+1 and ε(z) = zn+1 respectively. Hence, rotations which

are infinitesimally given by ε(z) = z and ε(z) = −z (indeed, they are given by z → eiaz ≈ (1 + ia)z

and z → e−iaz ≈ (1− ia)z), are generated by L0 − L0, while dilations, which are infinitesimally given

by ε(z) = z and ε(z) = z, are given by L0 + L0. Since dilations correspond to the Hamiltonian on the

cylinder we find:

H = L0 −
c

24
+ L0 −

c

24
, (9)

where we have taken the Casimir energy into account. Finally, these charges form an algebra called

the Virasoro algebra (see section 4.5.2 in [11] or section 3.3 in [10]):

[Lm, Ln] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (10)

with the corresponding algebra for the Ln’s and c as well.

2.8 Cardy Formula

We derive the Cardy formula which approximates the entropy of a 2-dimensional CFT in certain cir-

cumstances. To get a thermal partition function on the cylinder, we need to set the time coordinate
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to be periodic1. The cylinder hence becomes a torus and the corresponding complex plane is a lattice.

Indeed, we consider the lattice defined by: z ≡ z + 1, z ≡ z + τ, Im(τ) > 0 where τ is called the

modular parameter. We thus get a lattice of parallelograms which are parametrized by the modular

parameter only. This parameter can be changed in certain ways such that the corresponding par-

allelogram is unaltered. In fact there are only two such transformations (and their combinations):

the T -transformation which is given by T : τ → τ + 1 and the S-transformation which is given by

S : τ → − 1
τ
. The first one indeed leaves the parallelogram unchanged as z → z + τ + 1 = z + τ .

The second one flips the two sides of the parallelogram yielding the original parallelogram up to some

rescaling which is a conformal transformation.

We now derive the partition function on the torus in terms of the Virasoro operators found previously.

We first note that for Re(τ) = 0 the parallelogram becomes a square. With the identification for the

temperature T = Im(τ)−1, we find the partition function:

Z = Tr
(
eβH
)

= Tr
(
e−2πiIm(τ)H

)
= Tr

(
e−2πIm(τ)(L0+L0− c+c24 )

)
,

where the trace is over all states and we have used the identification of the Hamiltonian in terms of

Virasoro operators as in equation (9). Now, with Re(τ) 6= 0 we get a parallelogram which is skewed.

Hence, the rule z ≡ z + τ means that Re(z) will be identified with Re(z) + Re(τ). This has for effect

that any point on the cylinder will be displaced by the operator exp

(
2πiRe(τ)

(
L0 − L0

))
as we

know from our previous discussion that L0 − L0 generates rotations at fixed time. Hence, taking into

account this effect, we finally have the partition function:

Z(τ, τ) = Tre−2πIm(τ)(L0+L0− c+c24 )e2πiRe(τ)(L0−L0) = Tre2πiτ(L0− c
24)e−2πiτ(L0− c

24), (11)

where τ is the complex conjugate of the modular parameter. The partition function can as well be

written in the form of a sum over all eigenstates ∆ and ∆ of the operators L0 and L0 respectively:

Z(τ, τ) =
∑

∆,∆≥0

ρ(∆,∆)e2πiτ(∆− c
24)e−2πiτ(∆− c

24) =

∫ ∞
0

d∆d∆ ρ(∆,∆)e2πiτ(∆− c
24)e−2πiτ(∆− c

24),

with ρ(∆,∆) the number of states with eigenvalues ∆ and ∆. We can then invert this equation by a

contour integral going close to the real axis:

ρ(∆,∆) =

∫
dτdτZ(τ, τ)e−2πiτ(∆− c

24)e2πiτ(∆− c
24), (12)

which is hard to evaluate. Now, the crucial result by Cardy is that for certain properties of the CFT

(assumed to be satisfied here), the partition function is modular invariant (see [13]). More specifically,

1The intuition behind the relation between periodic time and thermal system comes from quantum mechanics. For
a time period of iβ = i/T , the time evolution operator in quantum mechanics becomes eiE(iβ) = e−Eβ which is the
Boltzmann factor for a system with temperature T [28].
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it is invariant under S-transformations, i.e. Z(τ) = Z(−1/τ). We now suppress the τ -dependency

and restore it later, as the following computation holds for the τ -dependent part independently. Using

modular invariance we find:

Z(τ) = Z

(
−1

τ

)
= e

2πi
τ

c
24Z0

(
−1

τ

)
,

where Z0(−1/τ) = Tre−
2πi
τ
L0 . Equation (12) then becomes:

ρ(∆) =

∫
dτ exp

2πi

(
τ

(
∆− c

24

)
− 1

τ

c

24

)Z0

(
−1

τ

)
:=

∫
dτe2πif(τ)Z0

(
−1

τ

)
. (13)

We can then make a saddle point approximation to evaluate this integral. Indeed, this approximation

states that the main contribution to the integral is given by the rapidly varying part of the integrand

e2πif(τ) evaluated at its extremum (or saddle point), as long as Z0(−1/τ) varies slowly around this

extremal point. The extremum of f is given by:

τ0 = i

√
c

24(∆− c/24)
,

where f ′(τ0) = 0. Now, we consider the large ∆ limit, in which case τ0 approaches zero, that is the

high temperature limit (assuming τ is purely imaginary). We can then check if Z0 is slowly varying

around τ0 ∼ 0, which would validate the saddle point approximation for large ∆. We write:

Z0

(
− 1

τ0

)
= Z0

(
i

ε

)
=
∑
∆≥0

ρ(∆)e−
2π∆
ε ,

where we have set τ0 = iε. Assuming that the lowest eigenvalue ∆0 is zero, we infer that as ε → 0

only ∆0 will contribute and thus Z0(−1/τ0) will be finite. The case ∆0 6= 0 is discussed in [14]. In

short, thanks to the modular invariance, we were able to control the high temperature behaviour of

Z(τ) which in turn enabled us to use a saddle point approximation in the large ∆ limit. We finally

find:

ρ(∆) ≈ exp
(
2πif(τ0)

)
= exp

2π

√
c

6

(
∆− c

24

) ,

which counts the number of states with high energy ∆. In the microcanonical ensemble, the entropy

is S = log
(
ρ(∆)

)
which yields (restoring the τ -part) the Cardy formula:

S = 2π

√
c

6

(
∆− c

24

)
+ 2π

√
c

6

(
∆− c

24

)
. (14)
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3 String Theory Background

String theory is the quantum mechanical study of interacting relativistic strings. Some fundamental

fields such as the graviton are found in the spectrum of (super-)strings. Moreover, the usual divergences

found in quantum theories of gravity are absent in string theory. It is therefore a good candidate for

quantum gravity and thus it should give a complete description of black holes. We present here the

string theoretic background necessary to understand the first microscopic derivation of the Bekenstein–

Hawking Entropy formula. This background will be presented as a review of facts that are relevant

for our purpose. We will try to direct the reader to literature where the derivations and more details

can be found. We are largely following the discussions presented in [16] and [17]. We will only present

free string theory assuming that spacetime is flat, i.e. we are describing strings at the lowest order in

perturbation theory.

3.1 Bosonic String Theory

In this section, we review the most natural first step towards a description of quantum mechanical

strings, i.e. the bosonic string theory.

3.1.1 Polyakov Action and Old Covariant Quantization

We describe a string embedded on a D-dimensional spacetime. The string defines a 2-dimensional

worldsheet, which we parametrize with a time parameter τ and a spatial parameter σ that runs from

0 ≤ σ ≤ π. Assuming that spacetime is flat Minkowski space, the action should minimize the area of

this worldsheet, i.e. the Nambu–Goto action:

S = −T
∫
d2σ
√
G; G = det(Gαβ), Gαβ = ∂αX

µ∂βXµ, (15)

where the coordinates are σ1 = σ, σ2 = τ , Xµ is the µth component of the embedding of the string in

spacetime, and T is the string tension defined as T = (2πα′)−1 with the Regge slope parameter α′ fixed

to α′ = 1
2
. The Nambu–Goto action is however unpractical for quantization. We therefore introduce

a string worldsheet metric hαβ as a zweibein in the action, i.e. the action should be equivalent to

the Nambu–Goto action when imposing the equations of motion of hαβ. As it can be inferred from

equation (3), the zweibein constraint corresponds to the vanishing of the energy-momentum tensor

Tαβ = 0. This process yields the Polyakov action:

S = −T
2

∫
d2σ
√
−hhαβ(σ)∂αX

µ∂βXµ. (16)

The Polyakov action is also called string sigma model action2. We can then fix two of the three

symmetries of the Polyakov action by setting hαβ equal to the two-dimensional Minkowski metric ηαβ.

2A sigma model is in essence defined as a mapping from a configuration space (here the string worldsheet) to a target
space (here the spacetime).
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The remaining action is the one quantized in the old-covariant quantization scheme:

S = −T
2

∫
d2σηαβ∂αX · ∂βX. (17)

This action corresponds exactly to the scalar field action from equation (7). Indeed, the residual

symmetry is a conformal symmetry and thus the string fields Xµ define a CFT after quantization.

The same analysis as in section 2.1 can be made when replacing z, z with the light-cone coordinates

σ+ = τ +σ and σ− = τ −σ. The zweibein condition thus boils down to the vanishing of T++ and T−−.

To implement these conditions, we can also impose the vanishing of the Fourier components of T++

and T−− which we denote Lm and L̄m.

The Euler-Lagrange equation for the string fields Xµ is a free wave equation (∂2
τ − ∂2

σ)Xµ = 0. We

need however to consider the boundary terms from the variation of the action:

−T
∫
dτ
[
∂σXµδX

µ|σ=π − ∂σXµδX
µ|σ=0

]
which should vanish. There are two different strings to consider. It is either a closed string, i.e.

Xµ(τ, σ) = Xµ(τ, σ + π), in which case the boundary term obviously vanishes, or it is an open string.

There are two consistent boundary conditions for the open string: Neumann boundary condition,

∂σXµ|σ=0,π = 0, and Dirichlet boundary conditions, Xµ|σ=0 = Xµ
0 , X

µ|σ=π = Xµ
π for some fixed

Xµ
0 , X

µ
π . We know that any solution to a wave equation can be written in an oscillator expansion.

Additionally, we can separate the solution in left-moving and right-moving modes, i.e. Xµ(τ, σ) =

Xµ
R(τ − σ) +Xµ

L(τ + σ) with:

Xµ
R(σ−) =

xµ

2
+
l2

2
pµσ− +

il

2

∑
n 6=0

1

n
αµne

−2inσ− , Xµ
L(σ+) =

xµ

2
+
l2

2
pµσ+ +

il

2

∑
n6=0

1

n
α̃µne

−2inσ+ ,

where αµn, α̃
µ
n are Fourier components and l is the fundamental length of the string, that sets the scale

of the theory. We will always set l = 1 for convenience. For the open string with Neumann bound-

ary condition, the left- and right- moving modes are related to each other because of the boundary

conditions. We therefore only find one set of oscillator modes αµn:

Xµ(τ, σ) = xµ + l2pµτ + il
∑
n6=0

1

n
αµne

−inτ cos(nσ). (18)

We can then proceed with canonical quantization by imposing the following commutation relations

in the open string case: [αµm, α
ν
n] = mδm+nη

µν , [xµ, pν ] = iηµν , and additionally [α̃µm, α̃
ν
n] = mδm+nη

µν

for closed strings. These are almost the usual harmonic oscillator operators with αµm =
√
mαµm and

αµ−m =
√
mαµ†m , m > 0. We then produce a Fock space by applying the operators αµ−m, m > 0 on a

ground state |0〉, which is defined by αµm |0〉 = 0, m > 0. For the opens string, the mass squared of a

10



state is:

M2 = −2a+ 2
∞∑
n=1

α−n · αn.

where the second term is proportional to the number operator N and the first term is an additional

normal ordering constant a. Similarly, for closed strings we have:

M2 = −8a+ 8
∞∑
n=1

α−n · αn = −8a+ 8
∞∑
n=1

α̃−n · α̃n.

However, the Fock space has negative norm states which are called ghosts. Indeed, since for µ = ν =

0, ηµν = −1, the state α0
−m |0〉 has negative norm. All is not lost, as we still haven’t set the Lm’s and

L̄m’s to zero. After quantization, these charges become operators which satisfy the Virasoro algebra

from equation (10) with central charge c = D (see section 2.2.2 in [17]). Quantum mechanically, it is

not sensible to set the Virasoro operators to zero. The correct condition is instead that any physical

state |φ〉 should be annihilated by Lm, m > 0 and (L0− a) |φ〉 = 0, where L0 = p2/2 +N . With these

constraints, the physical spectrum is free of ghosts when the spacetime dimension is D = 26 and a = 1

(see section 2.3.3 in [17]).

3.1.2 T-duality for Closed and Open Strings

A possible way to apply bosonic string theory to the 4-dimensional world we live in is to compactify

22 directions of our (D = 26)-dimensional bosonic string theory. This process is called Kaluza–Klein

compactification. In this section, we describe Kaluza–Klein compactification on a circle and we describe

an interesting duality between string theories on different circles: the T-duality.

Let us first discuss closed bosonic strings with one dimension, e.g. the 25th, compactified on a circle of

radius R. Then the mode expansion of the Xµ, µ = 0, . . . , 24 does not change. In the 25th direction,

the string can be winded up around the circle:

X25(σ + π, τ) = X25(σ, τ) + 2πRW,

where W ∈ Z is called the winding number. Hence, we need to add a term 2RWσ to the mode

expansion of X25(σ, τ). Additionally, as the 25th dimension is compact, it follows that the momentum

in this direction is quantized. Indeed, from quantum mechanics, the wave function can be written

as a free wave exp(ip25x25) which is invariant under the transformation x25 → x25 + 2πR. Thus the

momentum must be quantized such that p25 = K/R, where K ∈ Z is called Kaluza–Klein excitation
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number. Now the left and right movers are of the form:

X25
R (σ−) =

1

2
(x25 − x̃25) +

√
2α′α25

0 σ− +
i

2

∑
n6=0

1

n
αµne

−2inσ− ,

X25
L (σ+) =

1

2
(x25 + x̃25) +

√
2α′α̃25

0 σ+ +
i

2

∑
n6=0

1

n
α̃µne

−2inσ+ ,

where
√

2α′α25
0 = α′K

R
−WR,

√
2α′α̃25

0 = α′K
R

+WR and x̃25 is a constant which vanishes when taking

X = XR +XL. The mass squared of the states in the non-compact space are then given by:

1

2
α′M2 = (α25

0 )2 + 2NR − 2 = (α̃25
0 )2 + 2NL − 2,

from which it follows that NR −NL = WK, called level-matching condition, and

α′M2 = α′

((
K

R

)2

+ (WR)2

)
+ 2NR + 2NL − 4.

Both formulas are invariant under the transformations: W → K and R→ R̃ = α′

R
and vice versa. This

is the T-duality. The two bosonic string theories on a circle with radius R or R̃ and with momentum

and winding numbers interchanged are actually equivalent. The other variables change as follows

under T-duality α25
0 → −α25

0 , α̃
25
0 → α̃25

0 , X
25
R → −X25

R , X
25
L → X25

L . Let us now consider an open

string compactified on the same circle. In this case, the string does not have any winding modes

as it can always be contracted to a point. The momentum however is still quantized in the 25th

direction, i.e. p25 = K/R, K ∈ Z. We write X25 from equation (18) in terms of left and right movers,

X25 = X25
R +X25

L :

X25
R (σ−) =

x25 − x̃25

2
+

1

2
p25σ− +

i

2

∑
n6=0

1

n
α25
n e
−inσ− ,

X25
L (σ+) =

x25 + x̃25

2
+

1

2
p25σ+ +

i

2

∑
n6=0

1

n
α25
n e
−inσ+ .

As in the closed strings case, the T-duality maps X25
R → −X25

R and X25
L → X25

L , then X25 will be

mapped to:

X̃25 = X25
L −X25

R = x̃25 + p25σ +
∑
n6=0

1

n
α25
n e
−inσ sin(nσ).

So the dual open string has no momentum as there are no term proportional to τ . Additionally, the dual

string’s ends are fixed in the 25th dimension as sin(σ)|σ={0,π} = 0, i.e. X̃(τ, 0) = x̃, X̃(τ, π) = x̃+ πK
R

.

Hence, under T-duality, the Neumann boundary conditions become Dirichlet boundary conditions and

the momentum becomes a winding number. Since Dirichlet boundary conditions fixes the endpoints
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of the string, it is sensible to have a winding number as the winded string cannot be contracted to a

point without breaking.

Now, the endpoints of the strings can only move on a (24 + 1)-dimensional hyperplane. In fact, those

hyperplanes are physical objects themselves, called D-branes (D for Dirichlet). Dp-branes are defined

as being the (p+1)-dimensional hyperplane on which open strings can end3. Thus, we have just shown

that a D24-brane appears naturally by T-dualizing an open string on a circle. As the open string with

Neumann boundary conditions could freely move in all (25 + 1) dimensions, it is actually ending on

a D25-brane that wraps the circle of the 25th dimension. By repeatedly T-dualizing the open string

in other directions, we can construct Dp-branes of any p < 25. In short, T-duality maps a D25-brane

wrapping n circles to a D(25− n)-brane.

3.2 Supersymmetry

Bosonic string theory is unrealistic because, inter alia, as it does not realize fermionic degrees of

freedom. To include fermions in string theory, it is required to use supersymmetry, which is a symmetry

relating each bosonic degree of freedom to a corresponding fermionic one and vice versa. In this section,

we discuss some aspects of supersymmetry without refering to string theory. We refer the reader to

[21] and [22] for more details about supersymmetry.

3.2.1 Supersymmetry Algebra and Supermultiplets

A supersymmetry algebra is the fermionic extension of an algebra, such as the Poincaré algebra. We

will in fact only consider super-Poincaré algebras in the following. It contains not only ’bosonic’

generators denoted by the letter X but also ’fermionic’ ones denoted by the letter Q, which are called

supersymmetry generators. We denote with the letter N the number of supersymmetry generators.

Together they satisfy an algebra of the form:

[X,X ′] = X ′′, [X,Q] = Q′′, {Q,Q′} = X,

the brackets [·, ·] denote commutators and {·, ·} anticommutators. Explicitly, the Poincaré algebra is

given by translation generators Pµ as well as boosts and rotation generators Mµν . Additionally, the

supersymmetry generators Q transform in some spinor representation ρ of the Lorentz group. The

commutation relations are then (see section 3 of [21]):

[Pµ, Qa] = 0, [Mµν , Qa] = −
(
Mµν

) b
a
Qb, {Qa, Qb} = Cµ

abPµ + Zab,

where a, b are spinor indices, Mµν = ρ(Mµν), Zab is a central charge, meaning that it commutes

with all other elements of the superalgebra, and Cµ
ab are some structure constants that can be fixed

using consistency with Lorentz invariance and the super-Jacobi identity. The goal is then to find

3If we include background fields, Dp-branes are not necessarily hyperplanes, but can be curved.
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a representation of this algebra which will then incorporate as well as relate bosonic and fermionic

degrees of freedom.

A representation of the supersymmetry algebra is called a supermultiplet. Let us now motivate some

general properties of supermultiplets by reviewing supersymmetric algebras in quantum mechanics,

i.e. D = 1 and N arbitrary. In one dimension, the Poincaré algebra only contains time translations

which are generated by the energy operator: E = −i d
dt

. The supersymmetric algebra then reads for

I, J ∈ {1, . . . ,N}:

{QI , QJ} = 2EδIJ + ZIJ , [E,QI ] = 0,

where ZIJ is the central charge. We can then define the fermion number operator (−1)F which acts

on bosonic states |b〉 as (−1)F |b〉 = |b〉 and on fermionic states |f〉 as (−1)F |f〉 = − |f〉. As the

supercharges transform bosonic states in fermionic states and vice versa, it anticommutes with the

fermionic number operator: QI(−1)F = −(−1)FQI . We then have:

Tr

(
(−1)F

(
2EδIJ + ZIJ

))
= Tr

(
(−1)F{QI , QJ}

)
= Tr

(
(−1)FQIQJ +QI(−1)FQJ

)
= 0,

where we have used the cyclicity of the trace. In particular, we have 0 = Tr
(
(−1)FE

)
= 〈E〉Tr

(
(−1)F

)
.

Hence, if the energy 〈E〉 of a supermultiplet is non-zero, the supermultiplet must contain as many

fermionic and bosonic states such that Tr
(
(−1)F

)
vanishes. Thus, if we assume that the energy spec-

trum is discrete and that there is only a finite number of vacua, the Witten index, IW = Tr
(
(−1)F e−βH

)
will only get contributions from the vacua, i.e. IW = Tr

(
(−1)F

)
|E=0 = nB−nF which is the difference

between the number of bosonic and fermionic vacua. The Witten index is very important because it

gives an information on the system which will not change when varying parameters. We have seen

that there must be as many fermionic and bosonic degrees of freedom per multiplet. Hence, when

varying the parameters of a supersymmetric theory, states can leave or hit the ground states but only

in bosonic-fermionic pairs, which implies that the Witten index will remain constant. We will later

use a very similar index which is also parameter invariant, the elliptic genus.

3.2.2 R-symmetry

An R-symmetry is an automorphism of the supersymmetry algebra, i.e. it leaves the supersymmetry

algebra invariant. For a supersymmetry algebra with supersymmetry generators QI , I = 1, . . .N , an

element R of an R-symmetry group will commute with the Poincaré algebra and act on the supersym-

metry generators as:

[R,QI
a] = −RI

JQ
J
a ,

where R is a representation of R.

As an example, we show that D = 4 N = 1 supersymmetry algebra has the R-symmetry U(1). In
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4-dimensions, the maximal number of independent supersymmetries is 4N , which can be written in

N complex Weyl spinors Qα and their conjugate Q̄α̇. In the N = 1 case, we thus have a complex

supersymmetry generator Qα and its conjugate Q̄α̇. An element q of U(1) acts on the supersymmetry

generators as:

Qα → e−iqQa, Q̄α̇ → eiqQ̄α̇,

which clearly leaves the supersymmetry algebra invariant as these constants factor out of the (anti-)

commutators. We can thus assign charges to the supersymmetry generators: −1 for Qα and +1 for

Q̄α̇, and let the R-symmetry elements R act as charge operators:

[R,Qα] = −Qα, [R, Q̄α̇] = Q̄α̇.

Thus the supermultiplets will also have a quantum number r ∈ R corresponding to the R-symmetry

charge and acting with Qα will decrease r by one and acting with Q̄α̇ will increase it by one.

3.2.3 BPS States

Some massive multiplets called BPS states are particularly stable and they are therefore very useful.

We motivate what BPS states are in the case of N = 2, D = 4 supersymmetry.

For N = 2, the supersymmetry generators are given by two complex Weyl spinors Qα and Q̄α̇, which

satisfy the algebra:

{QI
1, Q̄

J
1̇
} = {QI

2, Q̄
J
2̇
} = 2MδIJ , {QI

1, Q
J
2} = 2ZεIJ , {Q̄I

1̇
, Q̄J

2̇
} = 2Z̄εIJ ,

where I, J = 1, . . . ,N label the supersymmetry generators, εIJ is an anti-symmetric 2-tensor, Z is the

central charge, and M is the mass of the state. We can then define the following operators:

a1 =
1√
2

(
Q1

1 + α1Q̄2̇2

)
, a2 =

1√
2

(
Q1

2 − α2Q̄1̇2

)
, a†α = (aα)†,

b1 =
1√
2

(
Q1

1 − α1Q̄2̇2

)
, b2 =

1√
2

(
Q1

2 + α2Q̄1̇2

)
, b†α = (bα)†,

where the α1 and α2 are pure phases. Choosing α1 = α2 = eiarg(Z), these operators satisfy the following

algebra:

{aα, a†β} = (2M +|Z|)δαβ, {bα, b†β} = (2M −|Z|)δαβ. (19)

Because of the positive definiteness of the Hilbert space, the right hand side of the anticommutators

from equation (19) must be positive. In particular, we have 2M −|Z| ≥ 0. In the case 2M > |Z|,
we can then act with the 4 operators a†α and b†β on a vacuum yielding 24 states. This is called a long

multiplet. The extremal case 2M = |Z| is called the BPS bound, which is trivially realised for massless
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multiplets. When this bound is satisfied, the mutliplet gets shortened. Indeed, the algebra of the

operators b vanishes. The operators b†α acts as the zero operator on any state, as 〈Ω| bαb†α |Ω〉 = 0 with

Ω being the vacuum. Hence, when the BPS condition is satisfied, only half of the supersymmetry is

realised. For N > 2, the central charge matrix is antisymmetric. It can be transformed in a block

diagonal form with the rth block of the form ZIJ = 2εIJZ which corresponds to the N = 2 central

charge structure. We could thus repeat the same process outlined for the case N = 2 and we would

get for N even, N /2 pairs of operators satisfying the algebra of equation (19). When k of these N = 2

algebras satisfy the BPS bound, we get k/N supersymmetry preserving multiplets. For the maximal

k = N /2, we call such states half-BPS states.

Now, BPS states are stable, because their masses are minimal with respect to the central charges

of the theory and thus the BPS states cannot decay into states with smaller masses. Hence, if we

change some parameters of a system without breaking the supersymmetry, the BPS states will remain

unchanged, with the only caveat being that another representation could become degenerate with the

BPS multiplet.

Finally, we note that this discussion can be generalized to extended objects in higher dimensions such

as the D-branes we already discussed.

3.2.4 Superspace

Ultimately we are interested in constructing supersymmetric field theories. The most straightforward

way to construct a supersymmetric field theory is to start with a field φ(x) which commutes with

the complex conjugate supersymmetry generators Q̄α̇, that is the analogue of the ground state in our

previous discussion of supermultiplets. Then one can construct other fields by acting on φ with the

supersymmetry generator Qα until the representation closes, i.e. only derivatives of the previously

found fields are produced when acting again with the supersymmetry generator (see section 3.3 [22]).

This yields a supermultiplet of fields and one can construct a supersymmetric Lagrangian out of those

fields. This procedure is however quite complicated. For N < 4, there exists a formalism which

makes supersymmetric field theories much more natural. As Poincaré-symmetric field theories are

easily defined on Minkowski space, supersymmetric field theories could be more naturally defined on

an extension of spacetime, i.e. an extension which includes spacetime symmetries generated by the

supersymmetry generators. Such an extension is called superspace. For example, for the N = 1, D = 4

case, superspace is constructed by adding 4 Grassmanian coordinates θα, θ̄α̇ to the usual spacetime

coordinate xµ. Then supersymmetry generators are viewed as translations along these ”fermionic”

directions. More details on the construction of superspace can be found in section 4.2 of [21] and

section 4 of [22].

3.3 Superstring Theory

We will now discuss how to make the action of string theory supersymmetric. They are mainly two

equivalent formalism to achieve this. The first one is the Ramond–Neveu–Schwarz (RNS) formalism
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which imposes supersymmetry on the string worldsheet. The second one is the Green–Schwarz (GS)

formalism which is supersymmetric in Minkowski spacetime or even more general spacetimes. Both

formalism have their advantages and disadvantages. We will first present the GS formalism because it

makes supersymmetry more visible. We then discuss very briefly the RNS formalism. As in bosonic

string theory where we assumed that D = 26, here we will assume that spacetime is 10-dimensional,

which appears, inter alia, as a requirement for the absence of ghosts in the physical spectrum of the

RNS formalism. For more details on both formalism, see sections 4 and 5 of [16] or [17].

3.3.1 GS Formalism

As mentionned above we will want to make spacetime supersymmetric, which is most naturally done by

extending the 10-dimensional Minkowski space to superspace. We therefore map the string worldsheet

to superspace with Xµ(σ, τ) as before and introducing some additional fermionic maps Θa(σ, τ), where

a denotes the spacetime spinor index. We are actually interested in the N = 2 case which is called

type II superstring theory. Now, N = 2 means that we have to introduce two fermionic coordinates

Θ1, Θ2 and since we are in 10-dimensions we can choose them to be Majorana-Weyl spinors. There

are two possibilities for the chiralities of these fermionic coordinates. They could either have different

chiralities or have the same chirality. The first case is called type IIA theory and the second one type

IIB. In terms of the chirality operator Γ11 = Γ0Γ1 . . .Γ9, where {Γµ,Γν} = 2ηµν is the Dirac algebra in

10-dimensions, we have Γ11ΘA = (−1)A+1ΘA for type IIA, and Γ11ΘA = ΘA for type IIB, with A = 1, 2.

Then supersymmetry in superspace can be defined as infinitesimal transformations of the superspace

coordinates: δΘAa = εAa, δXµ = ε̄AΓµΘA. With this definition, we indeed have the structure of a

super-Poincaré algebra since the commutator of two infinitesimal supersymmetry transformations give

[δ1, δ2]ΘA = 0 and [δ1, δ2]Xµ = −2ε̄A1 ΓµεA2 , which is a translation of the Xµ coordinate, i.e. a Poincaré

transformation (see section 5.1 in [16]). We can now define the combination Πµ
α = ∂αX

µ− Θ̄AΓµ∂αΘA,

where α = 1, 2 for a string, which is invariant under the supersymmetry transformations:

δ
(
∂αX

µ − Θ̄AΓµ∂αΘA
)

= ∂α

(
ε̄AΓµΘA

)
− ε̄AΓµ∂αΘA − Θ̄AΓµ∂αε

A = 0,

where we have used the fact that ∂αε
A = 0 as it is a global transformation. This calculation is a good

example of the convenience of superspace. With this supersymmetric extension of Xµ it would be

most natural to simply replace Xµ by Πµ in the Nambu-Goto action from equation (15). However,

this action has too many fermionic degrees of freedom. In fact, we only need half of them as can be

infered by analyzing the equations of motion of the action which we denote S1. This is related to a

gauge symmetry called κ-symmetry. If this symmetry holds, half of the fermionic degrees of freedom

can be gauged away. By imposing κ-symmetry, we must introduce a second term S2 of the Chern-

Simons type in the action (see section 5.1 and 5.2 of [16]). Introducing again a string worldsheet hαβ
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as a zweibein we finally have:

S = S1 + S2, S1 = − 1

2π

∫
d2σ
√
−hhαβΠα · Πβ,

S2 =
1

π

∫
d2σεαβ

[
−∂αXµ

(
Θ̄1Γµ∂βΘ1 − Θ̄2Γµ∂βΘ2

)
− Θ̄1Γµ∂αΘ1Θ̄2Γµ∂βΘ2

]
.

Now, for quantizing this action, we use light-cone gauge quantization, because it simplifies drastically

the equations of motions which are non-linear in Xµ and Θa. Light-cone gauge consists in fixing all

the symmetries of the action before quantizing. As for the Polyakov action from equation (17), we

can fix two out of the three symmetries of the action by setting hαβ = eφηαβ, with eφ chosen for

later convenience. The remaining symmetry is superconformal symmetry. In light-cone gauge, we

choose to fix this remaining symmetry as well before quantizing. The downside of this method is

that the formalism becomes non-covariant but it is still sufficient to find the spectrum of the theory,

which is our main interest. To fix this symmetry we rewrite the coordinates in light-cone coordinates

X+ = (X0 + XD−1)/
√

2 and set all the oscillators in this direction to zero, i.e. X+ = x+ + p+τ ,

which leaves only 8 independent degrees of freedom. The corresponding gauge choice for the fermionic

coordinates is Γ+ΘA = 0, where Γ± = (Γ0 ± Γ9)/
√

2. Imposing this gauge fixing, the equations of

motion become linear. In particular, we get two wave equations propagating in opposite directions

for the fermionic coordinates: (∂τ + ∂σ) Θ1 = 0, (∂τ − ∂σ) Θ2 = 0, which follows from the relative

minus sign between the two coordinates in S2. Light-cone gauge implies that only X i, i = 1, . . . , 8

are independent degrees of freedom, which reduces the 9-dimensional Lorentz symmetry to a SO(8)

symmetry. Similarly, we have started with two Majorana–Weyl fermions ΘA which in 10 dimensions

have each 16 real components. In light-cone gauge, we only have 8 degrees of freedom for each

ΘA, which then transform under Spin(8), the covering group of SO(8). This group has two spinor

representations with opposite chiralities namely 8s and 8c. After light-cone gauge fixing, we can then

identify for type IIA and IIB the remaining spinors components of
√
p+ΘA with S1,2, which transform

in the Spin(8) representations: for type IIA, 8s + 8c = (Sa1 ,S ȧ2 ), and for type IIB, 8s + 8s = (Sa1 ,Sa2 ),

where a, ȧ = 1, . . . , 8. Since the equations of motion of the 8-dimensional spinors are wave equations

travelling in opposite directions, we can write them in mode expansions, as in the bosonic string theory.

Since we are only interested in type II theories, we only describe the closed string case (for open type

I theory see [16]). In this case, we impose SAa(σ, τ) = SAa(σ + π, τ) and we find two different sets of

modes defined by:

S1a =
∞∑
−∞

Sane
−2in(τ−σ), S2a =

∞∑
−∞

S̃ane
−2in(τ+σ).
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We can then cannonically quantize the theory by imposing the anticommutation relations: {Sam, Sbn} =

δm+n,0δ
ab, {S̃am, S̃bn} = δm+n,0δ

ab. The mass squared of states in the spectrum is then given by:

α′M2 =
∞∑
n=1

(
αi−nα

i
n + nSa−nS

a
n

)
=
∞∑
n=1

(
α̃i−nα̃

i
n + nS̃a−nS̃

a
n

)
, (20)

where the normal ordering constants of the fermionic and bosonic modes exactly cancel. The operators

Sa0 , S̃
a
0 commute with the mass operator and since both satisfy the Clifford algebra {Sa0 , Sb0} = δab,

a, b = 1, . . . , 8 with the analog for S̃a0 , the ground state is degenerate and lives in an irreducible

representation of this algebra. The possible representations are a massless vector representation 8v

and two massless spinor representations with opposite chiralities 8c and 8s. Hence, each of the left-

and right-movers have a degenerate ground state of the form 8v + 8c or 8v + 8s. We thus have the

ground state formed by (8v + 8c)⊗ (8v + 8s) for type IIA and (8v + 8c)⊗ (8v + 8c) for type IIB. We

then have to write the irreducible representation content of these tensor products. We only describe

the process for the type IIB theory as it is analogous for type IIA. We get the following decomposition:

8v⊗8v = 1+28+35, which corresponds to a scalar, the dilaton φ, an antisymmetric rank-two tensor,

Bµν , and a symmetric traceless tensor, the graviton Gµν . This part of the field content is denoted

NS-NS sector, which is common to both the type IIA and IIB theories. The rest of the decomposition

is: 8c ⊗ 8c = 1 + 28 + 35+, which corresponds to a zero form C0, a two-form potential C2 and a

four-form potential C4 with a self-dual field strength F̃5. This part of the field content is unique to

type IIB superstring theory and is denoted R-R sector. The other possible tensor products yield the

corresponding fermionic superpartners.

3.3.2 RNS Formalism

We discuss the RNS formalism, because we will later use explicitly an analog of the RR-sector of the

closed superstring spectrum found in the RNS formalism.

In this formalism, we impose supersymmetry on the worldsheet. The procedure is very similar to the

quantization of bosonic string theory only with additional fermionic degrees of freedom4. Indeed, we

introduce two components spinors ψµ(σ, τ) on the worldsheet. Writing each component of the spinor

as ψ+, ψ−, we can infer that ψ± are Majorana–Weyl spinors. We can then write a supersymmetric

action (for supersymmetry variation, see section 4.3 in [16]) by adding a fermionic part Sf to the

bosonic string action from equation (17):

Sf =
i

π

∫
d2σ(ψ−∂+ψ− + ψ+∂−ψ+).

We note that this action corresponds exactly to the action from equation (8). Thus, Xµ and ψµ define

two CFT’s and with supersymmetry, the whole theory becomes a superconformal field theory (SCFT).

4As in the GS formalism, one can also use the superspace formalism, adding some fermionic coordinates on the
worldsheet (see section 4.3 [16])
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As the bosonic part of the action is exactly the same as in bosonic string theory, we can concentrate on

the fermionic part. Taking the variation of Sf against ψ+, ψ−, we find the Dirac equations: ∂+ψ− = 0

and ∂−ψ+ = 0 which describes left and right moving waves. We also find boundary terms which must

vanish: ∫
dτ(ψ+δψ− − ψ−δψ−)|σ=π − (ψ+δψ− − ψ−δψ−)|σ=0 = 0.

In the closed string case, there are two possibilities to fulfill this condition given by ψ±(σ, τ) = ±ψ±(σ+

π, τ). The two left- and right- moving ψ± are independent in the closed string case and can separately

satisfy the periodic or antiperiodic condition. The case that will be used later is when both are periodic,

which is called the Ramond–Ramond-sector (RR-sector). In this sector the mode expansions of the

two fermions are:

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ), ψµ+(σ, τ) =

∑
n∈Z

d̃µne
−2in(τ+σ).

We can then proceed with canonical quantization of the bosonic modes αn, α̃n as before and the

fermionic ones by setting {dµn, dνm} = ηµνδm+n,0, {d̃µn, d̃νm} = ηµνδm+n,0.

As in the bosonic string theory we have to restrict the Fock space which can be found by acting with

these operators. In the bosonic string theory, the restriction came from the zweibein constraint and

gauge fixing of the conformal symmetry. Now that we have a supersymmetric theory, the conformal

symmetry that lead to the Virasoro algebra becomes a superconformal symmetry with a super-Virasoro

algebra (supersymmetric extension of the Virasoro algebra). Indeed, there exists a supercurrent Gα

which is associated with local world-sheet supersymmetry. It has two components G− and G+ which

correspond to left- and right- moving supercurrents, as from the conservation of the current we have

∂+G− = 0 and ∂−G+ = 0. We can then write a superconformal algebra with T++ and G+ and another

superconformal algebra out of T−− and G−
5. We thus infer that XL, ψ+, XR, ψ− define a (N = 1, Ñ =

1)-superconformal field theory, where N and Ñ denotes the numbers of supersymmetry generators

for the left-movers algebra and for the right-movers respectively. For the remaining discussion we

only consider the left-moving sector as the same discussion holds for the right-moving sector. The

super-Virasoro algebra is defined by including the Fourier components Gm of the supercurrent:

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0, [Lm, Gn] =

(
m

2
− n

)
Gm+n,

{Gm, Gn} =2Lm+n +
D

2
m2δm+n,0.

We note that L0 is equal to L0 = 1
2
α2

0 + N where N is the number operator counting the number

of bosonic and fermionic excitations. As the zweibein constraint consisted in the vanishing of the

5This follows from the fact that the OPEs of T++ with G+ as well as T−− with G− are closing, see section 10.1 of
[18].
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energy-momentum tensor, we impose similarly here the vanishing of the energy-momentum tensor as

well as the supercurrent. Quantum mechanically, these constraints translate in: Lm |φ〉 = 0, m > 0,

Gn |φ〉 = 0, n ≥ 0 and L0 |φ〉 = 0. With these conditions, the physical spectrum is free of ghosts in

10-dimensional spacetime. The physical spectrum is however not spacetime supersymmetric and so a

projection, called GSO projection, needs to be used to constrain the physical spectrum again. After

this projection, we actually find exactly the same spectrum as in the GS formalism.

Finally, we discuss the case of (N = 2, Ñ = 2)-SCFT. In this case the same analysis can be followed

with the only difference being that there are two supersymmetry generators G±n for the left-moving

sector and correspondingly G̃±n for the right-moving sector. Moreover, there is a U(1) R-symmetry

which is generated by the operators Jn, n ∈ Z, which commute with the superconformal generators of

the left-moving sector as [Jn, G
±
m] = ±G±m+n (see section 2.4 in [35] for the complete algebra). We can

thus associate to each state a number FL, the fermion number, corresponding to the eigenvalue of the

operator J0. The superconformal generators G+
m raise its value by one and G−m lower it by one. For

the right-moving sector, we denote the fermion number with FR.

3.3.3 Half-BPS Branes

The n-forms with n = 0, 2, 4 found in the type IIB superstring theory couple to extended objects

of dimension p = 1, 3, 5. These objects indeed exist in our theory: they are the D-branes we have

discussed in section 3.1.2. These physical objects are of particular importance in superstring theory.

In this section, we discuss some properties of D-branes, in particular, the charges they carry and their

stability. We then discuss T-duality for the type IIA and IIB theories.

D-branes couple to the n-forms of the type II theories as point particles couple to the Maxwell field

in electrodynamics. Let us first recall the latter process. The Maxwell field is a one-form A with

field strength tensor F = dA. The Hodge dual ? maps n-forms to (D − n)-forms in D-dimensions.

Assuming the existence of magnetic monopoles as well as electric ones, the Maxwell equations take

the form: dF = ?Jm, d ? F = Je, where Je and Jm are the one-forms whose components are given

by the respective charge densities and currents. For a point particle sitting at the origin, the charge

densities are ρe(x) = eδ3(x) and ρm(x) = gδ3(x) with e the electric charge and g the magnetic one.

To find the value of these charges, we can use Gauss law, i.e. we integrate Maxwell’s equations over a

ball surrounding the origin and then use Stokes theorem, which yields:

g =

∫
S2

F, e =

∫
S2

?F,

where S2 is a 2-sphere centered at the origin. We can now generalize this discussion for n-form fields An

with field strength tensor Fn+1 = dAn. The analog of Gauss law corresponds to integrating ?Fn+1 over a

(D−(n+1))-sphere. As a (D−p−2)-sphere surrounds a p-dimensional object, we infer that An couples

electrically with Dp-branes for which p = n − 1. The magnetic dual corresponds to integrating Fn+1

over a (n+1)-sphere, which surrounds a Dp′-brane with p′ = D−3−n = D−p−4. Hence, in D = 10

dimensions, an n-form field couples electrically to a D(n − 1)-brane and magnetically to a D(7 − n)-
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brane. As in type IIB theory there are 0, 2, 4-form fields, the Dp-branes with p = −1, 1, 3, 5, 7 have

conserved charges which appear in the supersymmetry algebra as central charges. We will not consider

the D(−1)-brane, which is localized in space and time, and its magnetic dual the D7-brane. Similarly,

in type IIA, there are 1, 3-form fields with corresponding charged Dp-branes for which p = 0, 2, 4, 6.

Another convenient property of these D-branes is that they are half-BPS, as they preserve half of the

spacetime supersymmetry. Indeed, for Dp-branes living in the 0, . . . , p-directions, we end up with a

total supersymmetry generator Q given by (see section 6.2 in [16] and section 5.1 in [20]):

Q = Q1 + Γ0...pQ2,

where Q1 and Q2 are the initial N = 2 supersymmetry charges and Γi are Dirac matrices. This is

indeed a valid supersymmetry generator as for type IIA, where p is even, Γ0...p changes the chirality

of Q2 such that it becomes the same as the chirality of Q1 and for type IIB Γ0...p does not change

the chirality of Q2 as desired. Thus, there are only 16 of the initial 32 supersymmetries which are

conserved. In short, the half-BPS D-branes are particularly stable as they satisfy the BPS bound.

3.3.4 Compactification and D-branes

We have shown in the previous section that Half-BPS D-branes are the sources of the gauge fields in

type II superstring theories. Now, the electromagnetic field, i.e. a 1-form, couples to a particle, i.e. a

D0-brane, in the following way:

Sint = e

∫
A = e

∫
dτAµ

dxµ

dτ
,

with e the electric charge. Similarly, a n-form couples to a Dp-brane with p = n− 1 as:

Sint = ep

∫
Ap+1 = ep

∫
dp+1σAµ1...µp+1

∂Xµ1

∂σ0

· · · ∂X
µp+1

∂σp
,

where ep is the charge of the brane and we have explicitly written the pullback to the worldvolume

of the brane6. We now explore how the electric charge of a brane changes when we compactify along

certain directions (see section 15.4 of [19]). Let us consider a Dp-brane which couples to a (p+1)-form

A and wrap it around p circles in the 1, . . . , p directions. Let x1, . . . , xp denote the compact directions

with corresponding brane coordinates X1, . . . , Xp. In each of these compact directions, the brane can

wind the corresponding circle W k times, such that:

Xk(τ, σ1, . . . , σk, . . . , σp) = Xk(τ, σ1, . . . , σk + π, . . . , σp) + 2πW kRk, k = 1, . . . , p,

6Since a string defines a worldsheet, a brane defines a worldvolume.
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where 0 ≤ σk ≤ π parametrizes the worldvolume of the brane and Rk is the radius of the circle in the

kth-direction. Hence, as in the bosonic string theory, we must add the term 2RkW kσk to the brane

coordinate Xk. Let us assume that Xk(τ, σ1, . . . , σp) = 2RW kσk for k = 1, . . . , p. In the non-compact

world, the brane is now considered as a point with Xm(τ, σ1, . . . , σp) = xm(τ), where m = 0, p+1, . . . , 9.

The brane thus couples to the corresponding brane as:

Sint =

∫
Ap+1 =

∫
dτdσ1 · · · dσpAµ12...p

∂Xµ

∂τ
2W 1R1 · · · 2W pRp.

As the (p + 1)-form is antisymmetric, µ can only refer to the non-compact dimensions. If we ignore

the dependence of this form on the compact directions, we end up with:

Sint = W 1 · · ·W kVp

∫
Ap+1 = µp

∫
dτdσ1 · · · dσpĀm(x(τ))

∂xm

∂τ
,

where we defined Ām(x(τ)) := (α′)p/2Am12...p(x(τ)) with x(τ) denoting all the non-compact directions

and Vp := (2πR1)(2πR2) · · · (2πRp). We thus infer that the Dp-brane is identified as the source of a

1-form Ā in the non-compact world. Additionally, we can identify the Ā-charge of the brane with its

winding number in the compact directions. These facts hold more generally and will be crucial in the

black hole entropy calculation.

When starting with the action of a superstring theory, compactification boils down to a very similar

process. One must define fields such as Ā in the non-compact world from the original fields A of the

theory (see section 2.2 of [23]). In general, this process is of course more involved and the geometry of

the compact dimensions is very important. The D-branes in the original theory can then be wrapped

along the compact directions, such that they couple to the fields of the non-compact world. For

example, type IIB theory compactified over a 5-torus possess a 1-form gauge field in the non-compact

world (see section 5.1 of [23]). If we then compactify a D1-brane of the original type IIB theory on

one of the direction of the torus, the resulting D0-brane in the non-compact world will couple to the

1-form gauge field.

3.3.5 T-duality for Type II Superstring Theories

T-duality for type II string theories maps type IIA into type IIB and vice versa. We compactify the

9th-direction on a circle of radius R. From T-duality of closed strings (section 3.1.2), we know that

T-duality will leave the left-movers invariant and flip the sign of the right movers, i.e. X9
L → X9

L

and X9
R → −X9

R. In the RNS formalism, it is easily seen that the corresponding fermionic degrees

of freedom follow the same rule, i.e. the chirality of the fermionic right-movers is flipped while the

chirality of the left movers is unchanged. In the GS formalism, T-duality acts as: X9
L → X9

L, X
9
R →

−X9
R, S

a
1 → Sa1 , S

ȧ
2 → Γ9

bȧS
b
2, S

a
2 → Γ9

aḃ
S ḃ2, meaning that the right movers change chirality. We infer

that T-duality maps type IIA string theory on type IIB and vice versa. The Dp-branes of the type

IIA with p odd are mapped to the Dp′-branes of type IIB theory with p′ even and vice versa. Indeed,

from our discussion of T-duality for open strings, we know that a Dp-brane wrapped around a circle
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is mapped to a D(p− 1)-brane under T-duality. So the half-BPS branes of one theory are mapped to

the half-BPS states of the other theory.

3.3.6 Low-Energy Effective Actions

It is often easier to carry calculations in a low-energy limit. In string theory with flat background,

this corresponds to the weak coupling limit α′ → 0. In this regime, the massive states become

extremely heavy as can be inferred from equation (20) and thus cannot be observed. We are thus

interested in the massless modes. These can be described by a supergravity theory corresponding to

the low-energy effective theory of the superstring theory. The type IIA supergravity can be derived

by dimensional reduction from 11-dimensional supergravity. The type IIB supergravity needs to be

constructed by imposing supersymmetry and gauge invariance. We already know the field content of

type IIB supergravity from the derivation in section 3.3.1 of the field content of type IIB superstring

theory. We should then write all the possible supersymmetric equations of motion and then write a

corresponding action from which these equations could be derived. A problem in this procedure is that

the self-duality condition of the field strength tensor F̃5 = ?F̃5 cannot be incorporated in the action.

We thus write an action from which the correct equations of motion are derived when the self-duality

constraint of the 5-form F̃5 is additionally imposed. This action reads S = SNS + SR + SCS where:

SNS =
1

2κ2

∫
d10x
√
−ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
SR = − 1

4κ2

∫
d10x
√
−g
(
|F1|2+|F̃3|2 +

1

2
|F̃5|2

)
, SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3,

(21)

with Fn+1 = dCn, H3 = dB2, F̃3 = F3 −C0H3, F̃5 = F5 − 1
2
C2 ∧H3 + 1

2
B2 ∧ F3. The SNS part of the

action is constructed by NS-NS sector fields and is thus common to both type IIA and IIB theories.

The SR and SCS parts of the action are built out of the R-R sector fields and is unique to type IIB

theory. Another convention consists in replacing the metric with g̃ = e−Φ/2g. This convention is called

the Einstein-frame, whereas the convention used in equation (21) is the string-frame.
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4 Microscopic Description of Black Hole Entropy

As string theory is a good candidate for quantum gravity, it should be able to describe black holes

as quantum mechanical excitations of the fundamental objects in the theory. Indeed, D-branes at

strong coupling produce black holes. One can compute the compactification of branes to see that the

resulting metric and fields are that of a lower dimensional black hole. See section 2.3 of [25] for the

example of a string compactified on a torus which yields an extremal black hole. As the degeneracy

of the D-branes which produce a black hole can be calculated (at weak coupling), we will be able to

determine the entropy of the black hole.

We will follow the first microscopic derivation of the Bekenstein–Hawking entropy formula by A.

Strominger and C. Vafa [24]. The set-up corresponds to extremal black holes in type IIB string

theory in five non-compact dimensions. The compact dimensions are defined by K3 × S1, where K3

is a Calabi–Yau 2-fold. As the geometry of the compact space will in fact not matter much in our

discussion, we do not discuss compactification on Calabi–Yau manifolds (see section 9 of [16]).

4.1 The Bekenstein–Hawking Entropy

In this section, we compute the Bekenstein–Hawking entropy of a 5-dimensional black hole in type IIB

supergravity. We show how the Reissner–Nordström metric which describes charged black holes arises.

We are then able to compute the area of the black hole and thus the Bekenstein–Hawking entropy.

The low-energy effective action of type II string theory compactified on K3×S1 in the Einstein frame

is given by [24]:

S =

∫
d5x
√
−g

(
R− 4

3
(∇φ)2 − 1

4
exp

(
−4φ

3

)
H̃2 − 1

4
exp

(
2φ

3

)
F 2

)
=

∫
d5xL, (22)

where H̃ is a 2-form field strength with one component tangent to the S1, F is a RR 2-form field

strength and R is the scalar curvature. The 2-form H̃ is derived from the NS-NS 3-form H3 of equation

(21) as H̃µν = (H3)µνa with the index a referring to the S1 direction. The process of compactification

of supergravity leads to enhanced supersymmetry and this action actually has N = 4 supersymmetry.

We consider a spherically symmetric 5-dimensional extremal black hole, whose event horizon describes

a 3-sphere. The black hole couples to both fields F and H̃. As we have discussed in section 3.3.3, the

charges of the black hole can be computed by Gauss’ law, i.e.:

QH :=
1

4π2

∫
S3

? exp

(
−4φ

3

)
H̃, QF :=

1

16π

∫
S3

? exp

(
2φ

3

)
F, (23)

where ? denotes the Hodge dual which is required as we are integrating 2-forms on 3-spheres (recall

that the hodge dual of a 2-form is a (D − 2)-form so a 3-form in this case). The chosen convention

ensures that QH and 1
2
Q2
F are integers. As the system we are considering is spherically symmetric, we

25



can rewrite (23) for convenience in the following way:

2QHε3 = ? exp

(
−4φ

3

)
H̃,

8QF

π
ε3 = ? exp

(
2φ

3

)
F, (24)

where ε3 denotes the volume element on the unit 3-sphere S3, i.e. ε3 = 1
3!
εµνρdx

µ ∧ dxν ∧ dxρ, with xµ

the coordinate on the sphere.

Now, close to the horizon of the black hole the dilaton takes a constant value that we denote φh. As

the equation of motion for φ is given by:

0 =
d

dt

δL
δ(∂µφ)

− δL
δφ

⇔ 0 = 16∇2φ+ 2e−4φ/3H̃2 − e2φ/3F 2, (25)

we can find the value of φ = φh by substituting equation (24) for H̃ and F :

8e4φh/3Q2
H(?ε3)2 − e−2φh/3

82Q2
F

π2
(?ε3)2 = 0 ⇔ e2φh =

1

2

(
4QF

πQH

)2

. (26)

Now, let us assume that the asymptotic value of the dilaton at infinity φ∞ coincides with φh. We

then note that for φ = φh, it follows from equation (25) that 2e−4φh/3H̃2 = e2φh/3F 2 and thus using

equation (24) and (26) we find that

e−4φh/3H̃2 + e2φh/3F 2 = 12

(
8Q2

FQH

π2

)2/3

ε23.

Using this calculation, we can then compute the Einstein equations by varying the action with respect

to the metric, i.e. it gives the Ricci curvature Rµν :

Rµν =− 1√
−g

δ

δgµν

√−g(−e−4φ/3

4
H̃2 − e2φ/3

4
F 2

) =
3√
−g

δ

δgµν

√−g(8Q2
FQH

π2

)2/3

ε23


= 3

(
8Q2

FQH

π2

)2/3(
δε23
δgµν

− 1√
−g

δ
√
−g

δgµν

)
= 3

(
8Q2

FQH

π2

)2/3(
ε3µαβε

αβ
3ν − 1

2
gµν

)
,

where we have used that δ
√
−g

δgµν
= −1

2

√
−ggµν . This is the Einstein equation for the Reissner–Nordström

metric with charge Q =
√

3
(

8Q2
FQH
π2

)1/3

. A derivation of the Reissner–Nordström metric starting from

the Einstein equation as well as as a description of its properties can be found in section 5 in [27] and

section 4.1 in [28]. In the extremal case, i.e. when the mass of the black hole equals its charge, the

Reissner–Nordström black hole has one event horizon (in non-extremal case, it has two event horizons).
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Near the event horizon, the metric takes the form (see section 1.2 of [29]):

ds2 = −r
2

r2
0

dt2 +
r2

0

r2
dr2 + r2

0dΩ2
3, r0 =

(
8QHQ

2
F

π2

)1/6

,

where dΩ3 is the surface element of a 3-sphere S3. Thus we infer that the area A of the event horizon

described by the 3-sphere S3 is given by A = 2π2r3
0 and hence the Bekenstein–Hawking entropy is

given by:

SBH =
A

4
= 2π

√
QHQ2

F

2
. (27)

We note that in fact the assumption φ∞ = φh could be lifted. Indeed, the near-horizon geometry is

unaltered when we change φ∞ adiabatically from the value φh and hence the result for the entropy

still holds for arbitrary values φh (see discussion in section 2 of [24]).

4.2 The Microscopic Derivation

To derive the Bekenstein–Hawking entropy formula (27) microscopically, we will be counting at weak

coupling microscopic configurations of D-branes which at strong coupling produce the black hole

considered above. Such states must be BPS as we have been considering an extremal black hole

which satisfies a BPS bound, M = Q. Additionally, the BPS condition is a requirement for our

calculation. Indeed, we already know that BPS branes are stable. Hence, the counting of BPS states

at weak coupling will not be affected when changing to strong coupling, which is required such that

the counting makes sense for the entropy of the black hole. This is the key idea for the calculation of

the entropy.

In fact, we do not count the degeneracy of microscopic configurations of D-branes but instead, we

count an index which yields a lower bound on the true degeneracy. The existence of such an index is

crucial to derive the entropy formula. Indeed, as the index is chosen to be independent of continuous

parameters, it provides us with some freedom during the calculation. In reality, knowing that such

an index exists is enough in our calculation. It gives us sufficient freedom to make some crucial

approximations but actually the final calculation of the entropy does not rely on the counting of the

index but an easier computation involving the Cardy formula.

The D-branes we will be considering also need to carry two non-vanishing charges, since for either

QH = 0 or QF = 0 the area of the black hole vanishes. This is also sensible intuitively (see section 4

[23] and section 2.5.1 in [25]). Let us consider the example of a string wrapping a circle. Its winding

number will correspond to the charge under an electric field of the non-compact world as discussed

in section 3.3.4. Now, if the coupling becomes stronger, the wrapped string will produce a black hole

without an event horizon. Indeed, the string tension becomes so strong when the coupling changes

that it pinches the circle it surrounds, loosing a winding number and hence a horizon. To counter this

pinching effect, we can give the string some momentum which will have enough energy to keep the size
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of the circle finite. We will thus endow a momentum charge and a gauge field charge to the D-branes

that we will consider below.

In summary, we consider BPS states with two different charges. Hence, when making the coupling

stronger, the black hole produced by these BPS states has the same entropy as the one calculated at

weak coupling7. Moreover, the black hole inherits the two non-zero charges of the states and thus has

a non-vanishing area. At weak coupling, we consider an index giving a lower bound on the microscopic

degeneracy of the states. This index gives us enough freedom to make some approximations. We

finally compute the entropy with the Cardy formula.

4.2.1 Branes and Charges

We consider D-branes in type IIB superstring theory compactified on K3×S1. More precisely we take

1-,3-,5-branes and wrap them around S1 as well as 0-,2- and 4-cycles of K3 respectively, such that

they stretch in the S1 direction. The stretched directions of the branes are string-like. We can then

excite left- and right-moving oscillators in the S1 direction, endowing the states with a momentum

charge P . Additionally, these states posses R-R charges. Indeed, as these compactified branes are

considered as points in the non-compact world, they couple with the R-R field whose field strength is

the 2-form F . We can then write all the R-R charges of the D-branes in a vector QF . We can then

find a bilinear form encoding the geometry of the system such that contracting QF with it yields a

number Q2
F , corresponding to the square of the charge found previously in equation (23). Hence, the

black hole produced by those states at strong coupling will have charges characterised by P and Q2
F .

In fact, we can show that P = QH , yielding exactly the black hole for which we have already computed

the Bekenstein–Hawking entropy. Indeed, using the T-duality from type IIB to type IIA the charge

P turns into P units of winding around S1, see our discussion of T-duality in sections 3.1.2 and 3.3.5.

Now, we have shown in section 3.3.4 that the winding charge of a brane in the compact direction

corresponds to a gauge field charge in the non-compact world. The branes we are considering must

couple to a 2-form, which must be H̃ and hence we understand that the winding number is P = QH .

4.2.2 BPS states

Now that we have identified the correct charges, we need to understand how we get BPS states from

the branes in our configuration. As we know from our discussion in section 3.3.3, the D-branes we are

considering are actually half-BPS, i.e. they preserve half of the spacetime supersymmetries. However,

as our black hole has N = 4 supersymmetry, we must have BPS states which preserve a quarter of the

total spacetime supersymmetry. Indeed, we have started with type IIB superstring theory which has 32

spacetime supersymmetries, as discussed in section 3.3.1. Compactifying the theory to five dimensions

reduces the number of supersymmetries to 16 while only considering half-BPS states reduces it to 8,

we thus need to consider only the states which preserve half of the supersymmetry of the half-BPS

7As discussed in section 3.2.3, some states could become degenerate with the BPS states when tuning the coupling
which would change the value of the black hole entropy. We conjecture that the occurrences of this phenomenon are
negligible in comparison to the total number of states, which is sensible as the correct entropy is found at the end.
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D-branes to arrive at 4 supersymmetries.

Since we are interested in counting an index which does not depend on continuous parameters, we can

assume that the size of S1 is much larger than K3. The states are then described by a (1, 1)-sigma

model on S1×R with a target space M . To determine the target space, we can consider the string-like

low-energy excitations of the wrapped branes in the S1 direction. The dynamics of these states are

described by a non-linear sigma model whose target space corresponds to M :

M = (K3)k/Sk = Symk(K3), k =
1

2
Q2
F + 1 (28)

where Sn denotes the permutation group of n elements (see section 3.1.1 in [26] for an intuitive

explanation). In fact, we only need to know that the target space scales as 4(Q2
F/2+1) which is shown

in [30] and [31].

Now, we need to restrict to half of the supersymmetries of the sigma model to get the correct BPS

states. We use again the fact that we count an index which is independent on the continuous parameters

and take the limit where P is fixed and the size of S1 is taken to infinity. We then get a (4,4)-SCFT

in (1+1)-dimensions, as our model becomes clearly scale invariant. The (4,4)-SCFT corresponds to

the (2,2)-SCFT discussed in section 3.3.2 with additional structure. The U(1) R-symmetry becomes

a SU(2) R-symmetry and there is a global SU(2)× SU(2) symmetry. We can then consider the RR-

sector of the SCFT and restrict the SCFT to the leftmovers only, i.e. in terms of supercharges we set

L0 = 1
2
(H−P ) = 0 and let L0 = 1

2
(H+P ) arbitrary. It then follows that L0 = L0−L0 = P and hence

L0 takes integer values. The sigma model is thus described by a subsector of the (4, 4)-SCFT with the

rightmovers unexcited, hence preserving a quarter of the spacetime supersymmetry as desired.

4.2.3 Elliptic Genus

We have shown that the BPS states preserving a quarter of the supersymmetry are described by a

SCFT where only leftmovers are excited. We will now identify the index that we are counting and

which allowed us to change continuously the parameters of our system.

We have derived in equation (11) the partition function of a generic CFT. Moreover, the (4,4)-SCFT

has left- and right-moving sectors with corresponding fermion number FL, FR, as seen for (2,2)-SCFT

in section 3.3.2. Hence, we can generalize the partition function by adding some chemical potentials

z, z to each of these conserved charges, such that the partition function takes the form8:

Z(τ, q, q, y, y) = Tr
[
(−1)F qL0qL0yFLyFR

]
,

8We do not include the central charges from equation (11) for convenience, since they would only yield some constant
factors in the partition function. If we would include the central charges, we should then set L0 = c/24 above instead
of L0 = 0. We also note that alternatively the factor of (−1)F = (−1)FL(−1)FR could be incorporated in the definitions
of y, y.
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where we have defined F = FL + FR the total fermion number, y = e2πiz, y = e−2πiz, q = e2πiτ ,

q = e2πiτ . Now, we can specialize the partition function to define the elliptic genus (section 3.2 [32]):

χ(q, , q, y) = Tr
[
(−1)FyFLqL0qL0

]
. (29)

The factor (−1)FR will cancel all states for which L0 > 0, as for the Witten index discussed in section

3.2.1. We thus infer that the elliptic genus is in fact equivalent to:

χ(q, y) = Tr
[
(−1)FyFLqL0

]
. (30)

Thus, the right-movers do not contribute to this index. Since in our case, the right-movers are an-

nihilated, the elliptic genus exactly counts the BPS states. Of course, as for the Witten index, the

value of the elliptic genus does not yield the exact number of BPS states but a lower bound. We recall

that the Witten index gives the difference between the number of bosonic and fermionic vacua, from

which we could infer a lower bound on the true number of vacua. The elliptic genus is similar in that

way as it also has a (−1)F operator. Moreover, because of this similarity with the Witten index9, the

elliptic genus is also invariant under continuous deformations of the theory (see section 5.2 of [33] or

section 2 in [34] for a proof that the elliptic genus is a topological invariant). Hence, all the continuous

transformations we have made were justified.

4.2.4 Cardy Formula

We can now apply the Cardy formula from equation (14) to derive the entropy of the black hole10. In

our case, this formula is indeed applicable as we had calculated the Bekenstein–Hawking formula in a

regime where QH and Q2
F were large, which corresponds to high excitation level of the BPS states.

As M is a (hyperkähler) manifold of dimension 4k := 4
(
Q2
F/2 + 1

)
and as we know from our discussion

in section 2.5 and section 2.6 that each bosonic degree of freedom contributes 1 to the central charge

and each fermionic partner contributes 1
2
, the central charge is given by c = 6k, i.e. 6 = 4 · 1 + 4 · 1

2
.

We also know that the excitation level of the leftmovers is given by the eigenvalue of L0 = P which is

in fact equal to QH as shown in section 4.2.1. Hence, we can substitute c = 6
(
Q2
F/2 + 1

)
and ∆ = QH

in equation (14), which yields the entropy of the black hole:

Sstat = ln d(QF , QH) ∼ 2π

√
QH

(
1

2
Q2
F + 1

)
. (31)

This formula agrees exactly with the Bekenstein–Hawking entropy previously computed for large Q2
F

which is exactly the regime in which this calculation was reliable.

9We note that for z = 0, equation (30) yields the Witten index.
10In fact, the Cardy formula was derived for a CFT and not a SCFT as we have here. The correct quantity that

should be computed is really the elliptic genus. However, in the limit that we are considering, the Cardy formula yields
the correct result. See section 2.4 and 2.5 in [35] for more details regarding computations of the elliptic genus.
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